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1 Linear Regression Model

We want to study the relationship between y = year 2002 birth rate per 1000 females 15
to 17 years old and x = poverty rate, which is the percent of the state’s population living
in households with incomes below the federally defined poverty level. Thus we focus on the
scatterplot between PovPct and Brth15to17.
The plot shows a generally linear relationship, on average, with a positive slope. As the
poverty level increases, the birth rate for 15 to 17 year old females tends to increase as well.
We are now ready to estimate the linear regression model. To get the output select Linear
Regression under the Statistics window. Select Birth15to17 as Dependent variable and
PovPct as Continuous variable.

Open the Output window. Here there are some options, according to the aim of the analysis
it is possible to compute the predicted values, to conduct a residual analysis or to investigate
the presence of outliers and/or influential observations.
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Then the model has to be built as follows, by opening the Model window. Add the variable
PovPct in the Model effects column.

Finally, under the Option window, select the confidence intervals box for the estimates.

After selecting the run button, it is possible to get the estimates for the regression model.
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1.1 Output

The estimated regression line is the following one ŷ = 4.267 + 1.373PovPct, where y =
Brth150to17

• The interpretation of the slope (value = 1.373) is that the 15 to 17 year old birth
rate increases 1.373 units, on average, for each one unit (one percent) increase in the
poverty rate.

• The interpretation of the intercept (value=4.267) is that if there were states with
poverty rate = 0, the predicted average for the 15 to 17 year old birth rate would be
4.267 for those states. Since there are no states with poverty rate = 0 this interpretation
of the intercept is not practically meaningful for this example.

From the output, we also see the information that s = 5.55057 (Root MSE) and R2 = 53.3%.
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The value of s tells us roughly the average difference between the y-values of individual
observations and predictions of y based on the regression line. The value of R2 can be
interpreted to mean that poverty rates explain 53.3% of the observed variation in the 15 to
17 year old average birth rates of the states. The R2 (adj) value (52.4%) is an adjustment
to R2 based on the number of x-variables in the model (only one here) and the sample size.
With only one x-variable, the adjusted R2 is not important.

1.2 Simple Linear Regression Model Evaluation

Recall that we are ultimately always interested in drawing conclusions about the population,
not the particular sample we observed. In the simple regression setting, we are often inter-
ested in learning about the population intercept β0 and the population slope β1. Confidence
intervals and hypothesis tests are two related, but different, ways of learning about the values
of population parameters.
Is there a relationship between Brth15to17 and PovPct? Certainly, since the estimated slope
of the line, b1, is 1.373, not 0, there is a relationship between Brth15to17 and PovPct in
the sample of 51 data points. But, we want to know if there is a relationship between the
population of all of Brth15to17 and PovPct. That is, we want to know if the population
slope β1 is unlikely to be 0.

Looking at the p-value it is possible to conclude that β1 is significantly different from 0
(p-value <α, where α is usually 0.05 - thus the null hypothesis H0 : β1 = 0 is rejected).
This is equivalent to look at the confidence intervals; if 0 is included in the interval, then
the corresponding β is not significant. It is possible to note that 0 is not included in the CI
for β1.
Furthermore it is very important to know the interpretation of the ANOVA table, and the
meaning of all its elements (as shown in class).
The F-test is more useful for the multiple regression model when we want to test that more
than one slope parameter is 0. Here F-test is equivalent to t-test (F-value=t-value2 and the
corresponding p-values are the same).
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1.3 Simple Linear Regression Model Prediction

Typically, a regression analysis involves the following steps: model formulation, model esti-
mation, model and model use. Here we focus on the following questions: what is the average
response for a given value of the predictor x? What is the value of the response likely to be
for a given value of the predictor x?

Observe that the prediction interval is always wider than the confidence interval. Further-
more, both intervals are narrowest at the mean of the predictor values (about 15).
(In SAS it is possible to get the specific CI or PI for a given x value, by selecting Confi-
dence intervals for individual predicted value under the window Predicted Values).
The output can be seen by selecting Output data window.
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1.4 Simple Linear Regression Model Assumptions

Main Remarks

• Residuals vs Predicted Value. The residuals bounce randomly around the 0 line.
This suggests that the assumption that the relationship is linear is reasonable. The
residuals roughly form a horizontal band around the 0 line. This suggests that the
variances of the error terms are equal. No one residual stands out from the basic
random pattern of residuals. This suggests that there are no outliers.

• Residuals vs Quantile. Note that the relationship between the theoretical percentiles
and the sample percentiles is approximately linear. Therefore, the normal probability
plot of the residuals suggests that the error terms are indeed normally distributed.
This is also confirmed by the histogram of the residuals.

• Leverage and Cook’s Distance. They are useful to assess the presence of out-
liers and/or influential observations. Here only one observation needs further care to
investigate its nature, that is observation number 9. (influential observation means
that it could influence significantly the estimates of the regression line - graphically
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the regression line is pulled up towards this observation. If the observation is not sig-
nificantly, the estimates of the regression line with or without the observation under
investigation are approximately the same. In other words, the regression line does not
pull up towards this observation value).

2 Multiple Linear Regression Model

In the second part of this class we extend the linear regression model to the multiple linear
regression model. We use the same data set, but in this case the response variable is PovPct.
We want to study how this variable is related to all the others.
To estimate the linear regression model, select Linear Regression under the Statistics
window. Select PovPct as Dependent variable and all other variables as continuous variables.
Then open the Model window, as shown in the picture.

Open the Output window. Here there are some options, according to the aim of the analysis
it is possible to compute the predicted values, to conduct a residual analysis or to investigate
the presence of outliers and/or influential observations.
Under the Option window, select the following options: c.i. for the estimates, standardized
regression coefficients and VIF values.
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After selecting the run button, it is possible to get the estimates for the regression model.
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2.1 Output - Full Model

2.2 Output

The estimated regression line is the following one ˆPovPct = 6.22−0.46B15to17−0.82B18to19−
0.08V C + 1.82TB.
Some remarks

• Interpretation. Each coefficient represents the change in the mean response, per
unit increase in the associated predictor variable when all the other predictors are held
constant.
For example, -0.82 represents the change in PovPct, per unit increase in Brth18to19
when all other variables are held constant.
The intercept term, 6.22, represents the mean response, when all the predictors are all
zero (which may or may not have any practical meaning).

• Significance. The only significant variables are Brth18to19 and TeenBrth (look at
the p-value and CIs) .

• R2 vs. adj R2. R2 is always greater than adj R2. Whenever a further variable R2

increases since the fitting improves - SSM increases, a higher proportion of variability of
y is explained. However, this is not a good measure to compare two different multiple
linear regression model. Indeed the model complexity increases too; so a better measure
is represented by adj R2, where the model complexity (i.e. the number of predictors)
is taken into account.
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• t-test vs. F-test. In a multiple linear context, t-test and F-test are not equivalent
anymore. The t-test assess the significance of the single predictor, given ALL others
in the model. On the other hand, F-test assess the significance of the set of predictors.
In other words, it says if there is at least one predictor in the set that is significant. In
this example, the p-value of the F-test is 0.0001 - it follows that H0 : β1 = · · · = βP = 0
is rejected. This means that there exists at least one predictor that is significant, but
we do not know which one. This information is provided by the single t-tests.

• Standardized Coefficients. Standardization of the coefficient is usually done to
answer the question of which of the predictor variables have a greater effect on the
dependent variable in a multiple regression analysis, when the variables are measured
in different units of measurement. Here the most important variables are also the only
significant ones, i.e. TeenBrth (5.24) and Brth18to19 (-3.64).

• Multicollinearity. VIF quantifies the severity of multicollinearity; If VIF>5 then
multicollinearity is high. Here VIF values are extremely high (84, 175 and 438); they
correspond to very strong correlations between these variables (look at the correla-
tion matrix). Behind the problems arisen from the multicollinearity in the statistical
inference(high s.e., low t-values, and sometimes very high R2 that lead to unreliable
estimates for the coefficients), it is important to understand the intuition. If two vari-
ables are highly correlated, it may mean that they describe the same information; in
other words they explain the same amount of variability of y in the same way. This
means that it is not needed to have both predictors in the model. We only need one
of them. So a possible solution is to remove one or more predictors that are highly
correlated.

2.3 Multiple Linear Regression - Model Selection

In the multiple linear regression model, to select the best model, different procedures are
available. The best model means to conduct a variable selection. From a practitioner’s point
of view, it is always advisable to combine these automatic procedures with some a priori
knowledge. Indeed there could exist some variables that should be kept in the model since
they are important for the analysis of the phenomenon under investigation.
To conduct the variable selection, open the Selection window and select the following options.
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The selected models are the following ones.
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• Forward selection
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• Backward selection
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• Stepwise selection

It is possible to note that both Forward and Stepwise select the same model as the best
one. The Backward select a model with two predictors, but VIF values shows that there is
still multicollinearity. Thus, the best model is the one with only Brth15to17 as predictor
variable.
A further consequence of multicollinearity is to have different final models selected by dif-
ferent selection procedures. Anyhow, different selection procedures could lead to different
models, although multicollinearity is not present.

2.4 Multiple Linear Regression - Further Remarks

Here, we did not conduct the residual analysis again. It will be the same as that conducted
in Section 1.4. In the multiple linear regression model it is possible to plot the Residuals vs.
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Single Predictors. No other differences exist. Also in this case, it is possible to estimate the
confidence interval and prediction interval the response mean, as described in section 1.3.
Finally it is possible to assess the omission of some predictors. Plot the residuals versus
the variable that is not included in the model. If there is a linear pattern, it means that
the variability of the residuals (the variability of y that is unexplained by the current set of
predictors) can be explained by this predictor. Such pattern in the plot suggests to include
the predictor in the model.
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3 Multiple Linear Regression Model - Assignment

ASSIGNMENT
Use the data set Grape Juice and answer to the following questions.
Data description A company is selling a new type of grape juice in some of its stores for
pilot selling. Its marketing team wants to analyse:

• Which type of in-store advertisement is more effective?

• The Price Elasticity

• The Cross-price Elasticity

• How to find the best unit price to maximize the profit and the forecast of sales with
that price.

There are 5 variables:

• Sales: Total unit sales of the grape juice in one week in a store;

• Price: average unit price of the grape juice in one week;

• Ad type: The in-store advertisement type to promote the grape juice, ad type=0
(natural production); ad type=1 (family health caring)

• Price apples: average unit price of the apple juice in the same store in one week

• Price cookies: average unit price of the cookies in the same store in one week

Work on yourself on the following tasks:

1. Data Exploration

2. Fit Multiple Linear Regression. Provide a brief interpretation of coefficients; evaluate
the statistical significance of the model (t-tests and F-test and say in what they differ);
assess the model assumptions (residual analysis).

3. With the fitted model, we can analysis the Price Elasticity(PE) and Cross-price Elas-
ticity(CPE) to predict the reactions of sales quantity to price. Price elasticity is de-
fined as %∆Q/%∆P , which indicates the percent change in quantity divided by the
percent change in price; Cross-price Elasticity is the percent change in quantity di-
vided by the change in the price of some other product - PE = (∆Q/Q)/(∆P/P ) =
(∆Q/∆P ) ∗ (P/Q). Calculate also the CPE on apple juice and cookies to analyze the
how the change of apple juice price and cookies price influence the sales of grape juice.

4. Optimal Pricing and Sales Prediction. Usually companies want to get higher profit
rather than just higher sales quantity. So, how to set the optimal price for the new
grape juice to get the maximum profit based on the dataset collected in the pilot period
and the regression model above? To simplify the question, we can let the ad type =
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1, the price apple = 7.659 (mean value), and the price cookies = 9.738 (mean value).
Assume the marginal cost(C) per unit of grape juice is 5. We can calculate the profit
(Y) by the following formula - Y = (price - C) * Sales Quantity = (price - 5) * (804.55
- 51.24*price). Find the optimal price.

18


