Lab 2 — Spring 2021
11" March 2021
cavicchia@Qese.eur.nl

1 Linear Regression Model

We want to study the relationship between y = year 2002 birth rate per 1000 females 15
to 17 years old and x = poverty rate, which is the percent of the state’s population living
in households with incomes below the federally defined poverty level. Thus we focus on the
scatterplot between PovPct and Brth15tol7.

The plot shows a generally linear relationship, on average, with a positive slope. As the
poverty level increases, the birth rate for 15 to 17 year old females tends to increase as well.
We are now ready to estimate the linear regression model. To get the output select Linear
Regression under the Statistics window. Select Birth15tol7 as Dependent variable and
PovPct as Continuous variable.
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Open the Output window. Here there are some options, according to the aim of the analysis
it is possible to compute the predicted values, to conduct a residual analysis or to investigate
the presence of outliers and/or influential observations.
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Then the model has to be built as follows, by opening the Model window. Add the variable
PovPct in the Model effects column.
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OK Cancel

Finally, under the Option window, select the confidence intervals box for the estimates.
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After selecting the run button, it is possible to get the estimates for the regression model.



1.1  Output

Model: MODEL1
Dependent Variable: Brth15to17

Number of Observations Read | 51
Number of Observations Used | 51

Analysis of Variance

Sum of Mean
Source DF Squares Square | FValue | Pr>F
Model 1| 172525949 | 172525949 56.00 <0001
Errar 49 | 1509.63463 30.80887

Corrected Total | 50 3234.89412

Root MSE 555057  R-Square | 05333
Dependent Mean = 2228235 AdjR-Sq | 05238
Coeff Var 2491018

Parameter Estimates
Parameter | Standard

Variable DF Estimate Error | tValue | Pr=jt| | 95% Confidence Limits
Intercept 1 426729 252975 169 00980 0.81642 935101
PovPct 1 137335 0.18352 748 <0001 1.00454 174215

The estimated regression line is the following one y = 4.267 + 1.373PovPct, where y =
Brth150tol7

e The interpretation of the slope (value = 1.373) is that the 15 to 17 year old birth

rate increases 1.373 units, on average, for each one unit (one percent) increase in the
poverty rate.

e The interpretation of the intercept (value=4.267) is that if there were states with
poverty rate = 0, the predicted average for the 15 to 17 year old birth rate would be
4.267 for those states. Since there are no states with poverty rate = 0 this interpretation
of the intercept is not practically meaningful for this example.

From the output, we also see the information that s = 5.55057 (Root MSE) and R? = 53.3%.
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The value of s tells us roughly the average difference between the y-values of individual
observations and predictions of y based on the regression line. The value of R? can be
interpreted to mean that poverty rates explain 53.3% of the observed variation in the 15 to
17 year old average birth rates of the states. The R? (adj) value (52.4%) is an adjustment
to R? based on the number of x-variables in the model (only one here) and the sample size.
With only one x-variable, the adjusted R? is not important.

1.2 Simple Linear Regression Model Evaluation

Recall that we are ultimately always interested in drawing conclusions about the population,
not the particular sample we observed. In the simple regression setting, we are often inter-
ested in learning about the population intercept 5, and the population slope ;. Confidence
intervals and hypothesis tests are two related, but different, ways of learning about the values
of population parameters.

Is there a relationship between Brth15to17 and PovPct? Certainly, since the estimated slope
of the line, b1, is 1.373, not 0, there is a relationship between Brth15tol7 and PovPct in
the sample of 51 data points. But, we want to know if there is a relationship between the
population of all of Brth15to17 and PovPct. That is, we want to know if the population
slope 3 is unlikely to be 0.

Looking at the p-value it is possible to conclude that g is significantly different from 0
(p-value <a, where « is usually 0.05 - thus the null hypothesis Hy : 51 = 0 is rejected).
This is equivalent to look at the confidence intervals; if 0 is included in the interval, then
the corresponding 3 is not significant. It is possible to note that 0 is not included in the CI
for ;.

Furthermore it is very important to know the interpretation of the ANOVA table, and the
meaning of all its elements (as shown in class).

The F-test is more useful for the multiple regression model when we want to test that more
than one slope parameter is 0. Here F-test is equivalent to t-test (F-value=t-value? and the
corresponding p-values are the same).



1.3 Simple Linear Regression Model Prediction

Typically, a regression analysis involves the following steps: model formulation, model esti-
mation, model and model use. Here we focus on the following questions: what is the average
response for a given value of the predictor x? What is the value of the response likely to be
for a given value of the predictor x?

Fit Plot for Brth15to17
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Observe that the prediction interval is always wider than the confidence interval. Further-
more, both intervals are narrowest at the mean of the predictor values (about 15).

(In SAS it is possible to get the specific CI or PI for a given x value, by selecting Confi-
dence intervals for individual predicted value under the window Predicted Values).
The output can be seen by selecting Output data window.
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1.4 Simple Linear Regression Model Assumptions

Fit Diagnostics for Brth15to17
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Main Remarks

e Residuals vs Predicted Value. The residuals bounce randomly around the 0 line.
This suggests that the assumption that the relationship is linear is reasonable. The
residuals roughly form a horizontal band around the O line. This suggests that the
variances of the error terms are equal. No one residual stands out from the basic
random pattern of residuals. This suggests that there are no outliers.

Residuals vs Quantile. Note that the relationship between the theoretical percentiles
and the sample percentiles is approximately linear. Therefore, the normal probability
plot of the residuals suggests that the error terms are indeed normally distributed.
This is also confirmed by the histogram of the residuals.

Leverage and Cook’s Distance. They are useful to assess the presence of out-
liers and/or influential observations. Here only one observation needs further care to
investigate its nature, that is observation number 9. (influential observation means
that it could influence significantly the estimates of the regression line - graphically



the regression line is pulled up towards this observation. If the observation is not sig-
nificantly, the estimates of the regression line with or without the observation under
investigation are approximately the same. In other words, the regression line does not
pull up towards this observation value).

2 Multiple Linear Regression Model

In the second part of this class we extend the linear regression model to the multiple linear
regression model. We use the same data set, but in this case the response variable is PovPct.
We want to study how this variable is related to all the others.

To estimate the linear regression model, select Linear Regression under the Statistics
window. Select PovPct as Dependent variable and all other variables as continuous variables.
Then open the Model window, as shown in the picture.

Model Effects Builder x
Variables: Model effects:

Brth15t017 Single Effects (¥ Intercept

Brth18t019 Brth15t017

ViolCrime Brth18to19

TeenBrth ViolCrime

TeenBrth
Standard Models
0K Cance

Open the Output window. Here there are some options, according to the aim of the analysis
it is possible to compute the predicted values, to conduct a residual analysis or to investigate
the presence of outliers and/or influential observations.

Under the Option window, select the following options: c.i. for the estimates, standardized
regression coefficients and VIF values.
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After selecting the run button, it is possible to get the estimates for the regression model.



2.1 Output - Full Model

2.2 Output
Model: MODELA1
Dependent Variable: PovPct
Number of Observations Read | 51
Number of Observations Used | 51
Analysis of Variance
Sum of Mean
Source DF Squares Square | FValue | Pr>F
Model 4 | 56090320 14022580 1823 <0001
Error 46 | 353.83092 769198
Corrected Total | 50 91473412
Root MSE 277344  R-Square | 06132
Dependent Mean | 13.1176% AdjR-Sq | 05796
Coeff Var 2114283
Parameter Estimates
Parameter | Standard Standardized = Variance
Variable DF Estimate Error | tValue | Pr=|ft] Estimate Inflation | 95% Confidence Limits
Intercept 1 6.22349 1.82549 341 00014 0 0 254898 9.89801
Brth15to17 1 -0.45769 0.44681 -1.02 | 03110 086071 8395773 -1.35707 0.44168
Brth18to19 1 -0 82144 02731 -301 ) 0.0043 -364426 | 17457598 -1.37118 -02717
ViolCrime 1 -0.07786 0.06683 -1.17 | 0.2500 016228 230683 -0.21238 0.05665
TeenBrth 1 1.81957 0.66635 273 00089 524039 | 43798062 0.47827 3.16086

The estimated regression line is the following one PovPct = 6.22—0.46 B15t017—0.82B18t019—
0.08VC + 1.82T'B.
Some remarks

e Interpretation. Each coefficient represents the change in the mean response, per
unit increase in the associated predictor variable when all the other predictors are held
constant.

For example, -0.82 represents the change in PovPct, per unit increase in Brth18to19
when all other variables are held constant.

The intercept term, 6.22, represents the mean response, when all the predictors are all
zero (which may or may not have any practical meaning).

e Significance. The only significant variables are Brth18to19 and TeenBrth (look at
the p-value and ClIs) .

e R? vs. adj R?. R? is always greater than adj R2. Whenever a further variable R?
increases since the fitting improves - SSM increases, a higher proportion of variability of
y is explained. However, this is not a good measure to compare two different multiple
linear regression model. Indeed the model complexity increases too; so a better measure
is represented by adj R?, where the model complexity (i.e. the number of predictors)
is taken into account.
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e t-test vs. F-test. In a multiple linear context, t-test and F-test are not equivalent
anymore. The t-test assess the significance of the single predictor, given ALL others
in the model. On the other hand, F-test assess the significance of the set of predictors.
In other words, it says if there is at least one predictor in the set that is significant. In
this example, the p-value of the F-test is 0.0001 - it follows that Hy : 1 =---=8p =0
is rejected. This means that there exists at least one predictor that is significant, but
we do not know which one. This information is provided by the single t-tests.

e Standardized Coefficients. Standardization of the coefficient is usually done to
answer the question of which of the predictor variables have a greater effect on the
dependent variable in a multiple regression analysis, when the variables are measured
in different units of measurement. Here the most important variables are also the only
significant ones, i.e. TeenBrth (5.24) and Brth18to19 (-3.64).

e Multicollinearity. VIF quantifies the severity of multicollinearity; If VIF>5 then
multicollinearity is high. Here VIF values are extremely high (84, 175 and 438); they
correspond to very strong correlations between these variables (look at the correla-
tion matrix). Behind the problems arisen from the multicollinearity in the statistical
inference(high s.e., low t-values, and sometimes very high R? that lead to unreliable
estimates for the coefficients), it is important to understand the intuition. If two vari-
ables are highly correlated, it may mean that they describe the same information; in
other words they explain the same amount of variability of y in the same way. This
means that it is not needed to have both predictors in the model. We only need one
of them. So a possible solution is to remove one or more predictors that are highly
correlated.

2.3 Multiple Linear Regression - Model Selection

In the multiple linear regression model, to select the best model, different procedures are
available. The best model means to conduct a variable selection. From a practitioner’s point
of view, it is always advisable to combine these automatic procedures with some a priori
knowledge. Indeed there could exist some variables that should be kept in the model since
they are important for the analysis of the phenomenon under investigation.

To conduct the variable selection, open the Selection window and select the following options.
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The selected models are the following ones.

1 OPTIONS SELECTION OUTPU *
1 OPTIONS SELECTION OUTPU * e
~ MODEL SELECTION
~ MODEL SELECTION i .
Semings | Code/Results 2E B =2 Selection method:
Selection method: Stepwise selection v
« OPTIONS  SELECTION ~ OUTPU + = 2o cloword climination .
Add/remove effects with:
» MODEL SELECTION Add/remove effects with: Significance level v
Selection method: Significance level -
Forward selection - Stop adding/removing effects with:
Stop adding/removing effects with: Significance level -
Add/remove effects with: Significance level -
Significance level v Select best model by:
Select best model by: Default eriterion -
Stop adding/removing effects with: Default criterion v
Default eriterion v *Significance level to add an effect to the model:
*Significance level to remove an effect from the 0.2
Select best model by: model: 0.2
Default criterion v *Significance level to remove an effect from the
» SELECTION STATISTICS model: 0.2

*Significance level to add an effect to the model:
» SELECTION PLOTS
0.2 » SELECTION STATISTICS

~ DETAILS
» SELECTION STATISTICS Selection process details: » SELECTION PLOTS
» SELECTION PLOTS Selection summary - = DETAILS

Selection process details:

» DETAILS !
Selection summary v
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o Forward selection
The selected model is the model at the last step (Step 1).

Effects: | Intercept Brth15t017

Note: The p-values for parameters and effects are not adjusted for the fact that the terms in the model have been selected and so
are generally liberal.

Analysis of Variance
Sum of Mean
Source DF Squares Square | F Value | Pr>F
Model 1 487.85328 48785328 56.00 <0001
Error 49 | 426.88083 871185

Corrected Total | 50 | 91473412

Root MSE 295158
Dependent Mean 13.11765
R-Square 05333
AdjR-Sq 05238
AlC 165.35864
AICC 165.86928
SBC 116.22229

Parameter Estimates

Standard
Parameter | DF | Estimate Error | tValue | Pr=|t
Intercept 1 4464469 @ 1227985 364 | 00007

Brth15to17 1 0388342 0.051895 748 <0001

Model: MODEL1
Dependent Variable: PovPct

Parameter Estimates

Parameter | Standard Standardized = Variance
\ariable Label DF Estimate Error | tValue | Pr=|[t] Estimate | Inflation | 95% Confidence Limits
Intercept Intercept 1 4 46447 122799 364 | 00007 0 0 199674 £.93220
Brth15to17 | Brth15t017 1 0.38834 0.05189 748 <0001 073029  1.00000 028406 0.49263
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e Backward selection

Selected Model

The selected model is the model at the last step (Step 2).

Effects:

Intercept Brth18to 19 TeenBrth

Note: The p-values for parameters and effects are not adjusted for the fact that the terms in the model have been selected and so

Variable
Intercept
Brth18to19
TeenBrth

Source
Model

Error

Corrected Total

Parameter
Intercept
Brth18ta19
TeenBrth

Parameter
Estimate

6.41634
047151
0.96250

Label DF
Intercept 1
Brth18to19 1
TeenBrth 1

are generally liberal.

Analysis of Variance

Sum of Mean

DF Squares Square

2 | 54020699 270.10350

48 | 37452713 7.80265

50 | 91473412

Root MSE 279332
Dependent Mean 13.11765
R-Square 0.5906
AdjR-Sq 05735
AIC 160 68577
AlCC 16155533
SBC 11348125

Parameter Estimates

Standard
DF | Estimate Error | t
1 6416344 | 1774646
1 -0471507 | 0.140583
1 0962501 | 0216556
Model: MODEL1

F Value
3462

Pr= [t
0.0007
0.0016
=0001

Value
362
-3.35
444

Dependent Variable: PovPct

Parameter Estimates

Standard
Error | tValue | Pr> |t
177465 362 0.0007
0.14058 -335 00016
021656 444 <0001

14

Standardized
Estimate

0
-2.09180
277202

Pr=F
<.0001

Variance
Inflation

0
4560216
4560216

95% Confidence Limits
2.84818 9.98451
-0.75417 -0.18885
0.52709 139792



e Stepwise selection
Selected Model

The selected model is the model at the last step (Step 1).

Effects: | Intercept Brth15t017

Note: The p-values for parameters and effects are not adjusted for the fact that the terms in the model have been selected and so
are generally liberal.

Analysis of Variance

Sum of Mean
Source DF Squares Square | FValue | Pr=F
Model 1 487.85328 48785328 56.00  «0001
Error 49 | 426.88083 8.71185

Corrected Total | 50 91473412

Root MSE 295158
Dependent Mean 1311765
R-Square 05333
AdjR-Sq 05238
AIC 165.35864
AlCC 16586928
SBC 116.22229

Parameter Estimates

Standard
Parameter | DF | Estimate Error | tValue | Pr>ft|
Intercept 1| 4464469 | 1227985 364 | 0.0007

Brth15to17 1 0388342 0051895 743 <0001

Model: MODEL1
Dependent Variable: PovPct

Parameter Estimates

Parameter = Standard Standardized = Variance
Variable Label DF Estimate Error | tValue | Pr=jt] Estimate | Inflation = 95% Confidence Limits
Intercept Intercept 1 4 46447 122799 364 | 0.0007 0 0 199674 6.93220
Brth15to17 | Brth15ta17 1 0.38834 0.05189 748 | <0001 073029  1.00000 0.28406 0.49263

It is possible to note that both Forward and Stepwise select the same model as the best
one. The Backward select a model with two predictors, but VIF values shows that there is
still multicollinearity. Thus, the best model is the one with only Brth15tol7 as predictor
variable.

A further consequence of multicollinearity is to have different final models selected by dif-
ferent selection procedures. Anyhow, different selection procedures could lead to different
models, although multicollinearity is not present.

2.4 Multiple Linear Regression - Further Remarks

Here, we did not conduct the residual analysis again. It will be the same as that conducted
in Section 1.4. In the multiple linear regression model it is possible to plot the Residuals vs.
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Single Predictors. No other differences exist. Also in this case, it is possible to estimate the
confidence interval and prediction interval the response mean, as described in section 1.3.
Finally it is possible to assess the omission of some predictors. Plot the residuals versus
the variable that is not included in the model. If there is a linear pattern, it means that
the variability of the residuals (the variability of y that is unexplained by the current set of
predictors) can be explained by this predictor. Such pattern in the plot suggests to include
the predictor in the model.
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3 Multiple Linear Regression Model - Assignment

ASSIGNMENT
Use the data set Grape Juice and answer to the following questions.

Data description A company is selling a new type of grape juice in some of its stores for
pilot selling. Its marketing team wants to analyse:

Which type of in-store advertisement is more effective?
The Price Elasticity
The Cross-price Elasticity

How to find the best unit price to maximize the profit and the forecast of sales with
that price.

There are 5 variables:

Sales: Total unit sales of the grape juice in one week in a store;
Price: average unit price of the grape juice in one week;

Ad type: The in-store advertisement type to promote the grape juice, ad type=0
(natural production); ad type=1 (family health caring)

Price apples: average unit price of the apple juice in the same store in one week

Price cookies: average unit price of the cookies in the same store in one week

Work on yourself on the following tasks:

1.

2.

Data Exploration

Fit Multiple Linear Regression. Provide a brief interpretation of coefficients; evaluate
the statistical significance of the model (t-tests and F-test and say in what they differ);
assess the model assumptions (residual analysis).

With the fitted model, we can analysis the Price Elasticity(PE) and Cross-price Elas-
ticity(CPE) to predict the reactions of sales quantity to price. Price elasticity is de-
fined as %NAQ/%AP, which indicates the percent change in quantity divided by the
percent change in price; Cross-price Elasticity is the percent change in quantity di-
vided by the change in the price of some other product - PE = (AQ/Q)/(AP/P) =
(AQ/AP) % (P/Q). Calculate also the CPE on apple juice and cookies to analyze the
how the change of apple juice price and cookies price influence the sales of grape juice.

Optimal Pricing and Sales Prediction. Usually companies want to get higher profit
rather than just higher sales quantity. So, how to set the optimal price for the new
grape juice to get the maximum profit based on the dataset collected in the pilot period
and the regression model above? To simplify the question, we can let the ad type =
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1, the price apple = 7.659 (mean value), and the price cookies = 9.738 (mean value).
Assume the marginal cost(C) per unit of grape juice is 5. We can calculate the profit
(Y) by the following formula - Y = (price - C) * Sales Quantity = (price - 5) * (804.55
- 51.24*price). Find the optimal price.
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