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1 Get Ready to Start

How to import data in SAS?
Before you can import the data, you must be able to access the data file from SAS Studio.
If you are running SAS University Edition from virtualization software such as VirtualBox,
you must save these files to a shared folder.

The shared folder should contain
the following content:

• any preferences or settings
that you specify in SAS Stu-
dio

• any data and results that
you want to access from the
SAS University Edition and
your local computer

Before you start working in the
SAS University Edition, you should create a shared folder called myfolders. The con-
tent in a shared folder persists between sessions and is preserved when the SAS University
Edition is updated. In SAS Studio (which is the user interface for SAS University Edition),
the myfolders shared folder is available as Folders > My Folders.
To access this shared folder from a SAS program, use /folders/myfolders. This is the
logical location for the shared folder in the SAS University Edition. The physical location
of this shared folder depends on your operating environment. For example, in Windows op-
erating environments, this physical path could be C:\SASUniversityEdition\ myfolders.
You can use the SAS University Edition without creating the myfolders shared folder. How-
ever, any content that you save might be lost when the SAS University Edition is updated.
In addition, a warning message appears on the SAS University Edition Information Center.
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Now we are ready to import the data. Select the
bottom Run and see the output data. This dataset
of size n = 51 are for the 50 states and the District
of Columbia in the United States - (Data source:
Mind On Statistics, 3rd edition, Utts and Heckard).
There are 6 columns (1 label column and 5 vari-
ables):

• Location - State name;

• PovPct - Percentage of population living in
households with income below poverty level ;

• Brth15to17 - Birth rate for females 15 to 17
years old = births per 1,000 persons in group;

• Brth18to19 - Birth rate for females 18 to 19
years old = births per 1,000 persons in group;

• ViolCrime - Violent crime rate in state;

• TeenBrth - Birth rate for females 15 to 19
years old = births per 1,000 persons in group.

2 Descriptive Statistics

First, we examine the main descriptive statis-
tics of the data. The Summary Statistics
task provides data summarization tools to com-
pute descriptive statistics for variables across
all observations and within groups of obser-
vations. You can also summarize your data
in a graphical display, such as a histogram.
These can be obtained as follows. First
select Summary Statistics under Statistics
in the Tasks and Utilities. Then, the
user interface for the Summary Statistics task
opens.
On the Data tab, select theWORK.IMPORTDATA
dataset(it is possible to rename the dataset, if you
like another name!). To the Analysis variables role,
assign the column names, that are the variables, as
depicted in the figure
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Under the window Statistics, select the following summary descriptives, for example. To
see the output, you have to give a name for the output, as shown below (by selecting the
window OUTPUT). To get the summary statistics, select the bottom run (or F3).

2.1 Output

The summary statistics are the following ones
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We see that Birth18to19 has highest mean, standard deviation, and IQR. Although Viol-
Crime shows the largest range, its IQR is the smallest. We deduce that there may be very
values (indeed mean is larger than median) that affect the range, standard deviation and
mean. Median and IQR are not affected by extreme values (that can be positive or negative).
For this reason, they are said to be robust summary statistics. They give us an idea about
the center of the distribution and its variability (and its shape - more or less concentrated
around the central value), respectively. Comparing the means with the medians, we deduce
that the distributions are quite symmetric for all variables, apart from ViolCrime.

2.2 Plots

To complete the univariate analysis, it is possible to create some plots, histograms and
boxplots, as follows.
Under the window Plot, select the following plots, for example.

To see the output, you have to give a name for the output, as shown below (by selecting the
window OUTPUT). To get the plots, select the bottom run (or F3).
The plots depict graphically the main features of the variables. The distributions of the
variables PovPct and TeenBirth result to be approximately normally distributed well ap-
proximated (the corresponding normal density and kernel density are very close to each
other). The distribution of the variable ViolCrime departs from the normality distribution
more heavily. The boxplot summarizes the variable distribution in terms of quartiles, but
it does not show some important features, such as multimodality, presence of outliers, gaps
between values. On the other hand, the histogram does not put in evidence how the data
are distributed in terms of quartiles. It is always advisable to look at both plots to draw
univariate conclusions about the data.
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2.3 Bivariate analysis

To analyse the dependencies between variables, it is useful to create a scatterplot matrix of
the data and to compute the correlation matrix.
The scatterplot can be obtained by selecting the option Data Exploration under the win-
dow called Statistics .

The correlation matrix can be obtained by selection the optionCorrelation Analysis under
the window called, Statistics .
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2.4 Output

Looking at the scatterplot, all variables are positively correlated. Brth15to17, Brth18to19
and ViolCrime are highly correlated on each other. On the other hand ViolCrime is poorly
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correlated with all variables. This is confirmed by the correlation matrix.

Indeed the highest correlations are 0.94245 (correlation between Brth15to17 and Brth18to19),
0.97833 (correlation between Brth15to17 and TeenBrth) and 0.98897 (correlation between
Brth18to19 and TeenBrth). The lowest correlation is 0.46956 (correlation between PovPct
and ViolCrime).

3 Linear Regression Model

We want to study the relationship between y = year 2002 birth rate per 1000 females 15
to 17 years old and x = poverty rate, which is the percent of the state’s population living
in households with incomes below the federally defined poverty level. Thus we focus on the
scatterplot between PovPct and Brth15to17.
The plot shows a generally linear relationship, on average, with a positive slope. As the
poverty level increases, the birth rate for 15 to 17 year old females tends to increase as well.
We are now ready to estimate the linear regression model. To get the output select Linear
Regression under the Linear Models window. Select Birth15to17 as Dependent variable
and PovPct as Continuous variable.
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Open the Output window. Here there are some options, according to the aim of the analysis
it is possible to compute the predicted values, to conduct a residual analysis or to investigate
the presence of outliers and/or influential observations.

Then the model has to be built as follows, by opening the Model window. Add the variable
PovPct in the Model effects column.
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Finally, under the Option window, select the confidence intervals box for the estimates.

After selecting the run button, it is possible to get the estimates for the regression model.

3.1 Output
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The estimated regression line is the following one ŷ = 4.267 + 1.373PovPct, where y =
Brth150to17

• The interpretation of the slope (value = 1.373) is that the 15 to 17 year old birth
rate increases 1.373 units, on average, for each one unit (one percent) increase in the
poverty rate.

• The interpretation of the intercept (value=4.267) is that if there were states with
poverty rate = 0, the predicted average for the 15 to 17 year old birth rate would be
4.267 for those states. Since there are no states with poverty rate = 0 this interpretation
of the intercept is not practically meaningful for this example.

From the output, we also see the information that s = 5.55057 (Root MSE) and R2 = 53.3%.

The value of s tells us roughly the average difference between the y-values of individual
observations and predictions of y based on the regression line. The value of R2 can be
interpreted to mean that poverty rates explain 53.3% of the observed variation in the 15 to
17 year old average birth rates of the states. The R2 (adj) value (52.4%) is an adjustment
to R2 based on the number of x-variables in the model (only one here) and the sample size.
With only one x-variable, the adjusted R2 is not important.

3.2 Simple Linear Regression Model Evaluation

Recall that we are ultimately always interested in drawing conclusions about the population,
not the particular sample we observed. In the simple regression setting, we are often inter-
ested in learning about the population intercept β0 and the population slope β1. Confidence
intervals and hypothesis tests are two related, but different, ways of learning about the values
of population parameters.
Is there a relationship between Brth15to17 and PovPct? Certainly, since the estimated slope
of the line, b1, is 1.373, not 0, there is a relationship between Brth15to17 and PovPct in
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the sample of 51 data points. But, we want to know if there is a relationship between the
population of all of Brth15to17 and PovPct. That is, we want to know if the population
slope β1 is unlikely to be 0.

Looking at the p-value it is possible to conclude that β1 is significantly different from 0
(p-value <α, where α is usually 0.05 - thus the null hypothesis H0 : β1 = 0 is rejected).
This is equivalent to look at the confidence intervals; if 0 is included in the interval, then
the corresponding β is not significant. It is possible to note that 0 is not included in the CI
for β1.
Furthermore it is very important to know the interpretation of the ANOVA table, and the
meaning of all its elements (as shown in class).
The F-test is more useful for the multiple regression model when we want to test that more
than one slope parameter is 0. Here F-test is equivalent to t-test (F-value=t-value2 and the
corresponding p-values are the same).

3.3 Simple Linear Regression Model Prediction

Typically, a regression analysis involves the following steps: model formulation, model esti-
mation, model and model use. Here we focus on the following questions: what is the average
response for a given value of the predictor x? What is the value of the response likely to be
for a given value of the predictor x?

Observe that the prediction interval is always wider than the confidence interval. Further-
more, both intervals are narrowest at the mean of the predictor values (about 15).
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(In SAS it is possible to get the specific CI or PI for a given x value, by selecting Confi-
dence intervals for individual predicted value under the window Predicted Values).
The output can be seen by selecting Output data window.
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3.4 Simple Linear Regression Model Assumptions

Main Remarks

• Residuals vs Predicted Value. The residuals bounce randomly around the 0 line.
This suggests that the assumption that the relationship is linear is reasonable. The
residuals roughly form a horizontal band around the 0 line. This suggests that the
variances of the error terms are equal. No one residual stands out from the basic
random pattern of residuals. This suggests that there are no outliers.

• Residuals vs Quantile. Note that the relationship between the theoretical percentiles
and the sample percentiles is approximately linear. Therefore, the normal probability
plot of the residuals suggests that the error terms are indeed normally distributed.
This is also confirmed by the histogram of the residuals.

• Leverage and Cook’s Distance. They are useful to assess the presence of out-
liers and/or influential observations. Here only one observation needs further care to
investigate its nature, that is observation number 9. (influential observation means
that it could influence significantly the estimates of the regression line - graphically

14



the regression line is pulled up towards this observation. If the observation is not sig-
nificantly, the estimates of the regression line with or without the observation under
investigation are approximately the same. In other words, the regression line does not
pull up towards this observation value).
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