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Abstract Multidimensional phenomena are often characterised by nested latent con-
cepts ordered in a hierarchical structure, from the most specific to the most general
ones. In this paper, we model a nonnegative data covariance matrix by extending the
Ultrametric Correlation Model to covariance matrices. The proposal is a parsimo-
nious model which identifies a partition of variables in a reduced number of groups,
and the relationships among them via the ultrametric property. The proposed model
is applied to investigate the relationships among the dimensions of the Teachers’
Job Satisfaction in Italian secondary schools.
Abstract I fenomeni multidimensionali sono spesso caratterizzati da concetti la-
tenti ordinati in una struttura gerarchica, dai più specifici al più generale. In questo
articolo ci proponiamo di modellare una matrice di coviarianza nonnegativa, esten-
dendo il modello chiamato Ultrametric Correlation Model alle matrici di covarian-
za. La proposta metodologica si esplica in un modello parsimonioso che identifica
una partizione di variabili in un numero ridotto di gruppi e le loro relazioni me-
diante la proprietà di ultrametricità. Il modello proposto è applicato allo studio
delle relazioni tra le dimensioni della soddisfazione lavorativa dei professori nelle
scuole italiane superiori di secondo grado.
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1 Introduction

Multidimensional phenomena are often characterised by a hierarchy of nested latent
concepts (dimensions) with different levels of abstraction, from the most specific to
the most general ones. The study of these phenomena needs specific models since
the traditional ones, usually used to reconstruct the relationships among variables
(e.g., Factor Analysis, FA, [1]), fail in the definition of a hierarchical structure over
them. Cavicchia et al. [4] introduced a parsimonious simultaneous model, named
Ultrametric Correlation Model (UCM), to reconstruct a nonnegative data correlation
matrix of order p via an ultrametric correlation one. The ultrametric property allows
both to identify a partition of variables in Q ≤ p groups and the relationships among
them by defining two difference features: the within-concept consistency and the
correlation between groups.

In this paper, we introduce a new model, called Ultrametric Covariance Model
(UCovM), to reconstruct a nonnegative covariance matrix by extending the one
proposed by Cavicchia et al. [4] for nonnegative correlation matrices. Similarly to
UCM, UCovM defines a hierarchy of latent concepts by pinpointing a variable par-
tition in Q groups characterised by three features: the variance of a group, the co-
variance within the group and the covariance between groups. Since a decreasing
order is imposed on these features, two variables belonging to the same group are
more concordant than two belonging to different groups. Although the nonnegativ-
ity assumption might seem restrictive, it turns out to be realistic in many real-data
applications. We apply UCovM to Teachers Job Satisfaction data set [7] in order
to investigate the hierarchical relationships between the six dimensions defining the
job satisfaction for teachers.

2 Background

Let us recall the definition of an ultrametric matrix [6, pp. 58-59], which differs
from an ultrametric distance matrix even if there exists a relationship between the
two.

Definition 1. A nonnegative matrix U of order p is said to be ultrametric if

(i) u jl = ul j for all j, l = 1, . . . , p (symmetry);
(ii) u j j ≥ max{ul j : l = 1, . . . , p} for j = 1, . . . , p (column pointwise diagonal dom-

inance);
(iii) u jl ≥ min{u ji,uil}, for i, j, l = 1, . . . , p (ultrametric inequality).

Every ultrametric matrix turns out to be positive semi-definite, as demonstrated
by Dellacherie et al. [6, pp. 60-61]. Considering a nonnegative data covariance ma-
trix S of order p, with elements s jl ∈ R+ (the set of nonnegative real numbers),
j, l = 1, . . . , p, it is (i) symmetric and (ii) positive semi-definite by definition. If con-
ditions (ii) and (iii) hold, S is an ultrametric covariance matrix.
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3 Methodology

Let S be a nonnegative data covariance matrix of order p. The problem we want to
deal with can be formalised as

S = Su +E, (1)

where Su is an ultrametric covariance matrix of order p and E is an error matrix of
the same order.

The Ultrametric Covariance Model (UCovM) defines an ultrametric covariance
matrix for modelling hierarchical latent concepts, which is formally specified as
follows

Su = V(SW +SB)V′ −VSWV′ & Ip +VSVV′ & Ip, (2)

subject to constraints

V = [v jq ∈ {0,1} : j = 1, . . . , p,q = 1, . . . ,Q]; (3)

V1Q = 1p i.e. ∑Q
q=1 v jq = 1 j = 1, . . . , p; (4)

SB = S′
B,diag(SB) = 0,Bsqh ≥ min{Bsqt ,Bsht } q,h, t = 1, . . . ,Q, t '= h '= q; (5)

min{W sqq : q = 1, . . . ,Q}≥ max{Bsqh : q,h = 1, . . . ,Q, h '= q}; (6)

V sqq ≥ W sqq, q = 1, . . . ,Q, (7)

where Ip is an identity matrix of order p, & is the Hadamard (element-wise) product
and diag(SB) identifies the main diagonal of SB.

SV and SW are diagonal matrices, whose diagonal elements represent the vari-
ances of and the covariances within the Q variable groups, respectively, whereas the
covariances between them are expressed by the off-diagonal elements of SB. Since
constraint (5), (6) and (7) hold, an ordering between the elements of SV, SW and
SB exists. This leads to a hierarchy of latent concepts, each one associated with
a variable group, whose hierarchical levels are defined by the covariances within
and between groups, i.e., the diagonal and off-diagonal elements of SW and SB,
respectively. Specifically, the higher the covariance among two variable groups (or
variables themselves), the stronger the concordance among them and the earlier they
are merged together.

UCovM allows pinpointing groups of variables, each one associated with a di-
mension, by reducing the dimensonality of the phenomenon under study, and iden-
tifying new latent concepts and the hierarchical relationships among them. Thus,
UCovM is an exploratory, parsimonious and simultaneous model. If V is set a priori,
i.e., the variable partition is fixed, then the model can be applied in a confirmatory
approach.

The proposal is estimated in a least-squares framework and implemented with a
coordinate descent algorithm.
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Table 1: List of variables for each dimension of the Teachers’ Job Satisfaction data
seta and the corresponding Cronbach’s α .

Dimension Dimension ID Variables α

Communication Comm 1, 2, 3, 4, 5 0.8136
External School Image Imag 6, 7 0.8582
Involvement Invo 8, 9, 10, 11, 12, 13 0.8999
Leadership Lead 14, 15, 16, 17 0.9021
School Climate Clim 18, 19, 20, 21, 22, 23 0.8817
Infrastructure Infr 24, 25 0.7052

a See [7, Table 1] for a complete description of the variables.

4 Teachers’ Job Satisfaction: differences between the overall
ultrametric covariance structure and those by gender

Job Satisfaction is a multidimensional phenomenon characterised by different di-
mensions affecting feelings and emotions of employees towards their job. We apply
the UCovM to study Teachers’ Job Satisfaction (TJS) and investigate the hierarchi-
cal relationships among the factors that contribute to define TJS. The analysis is
based upon the survey conducted by Sarnacchiaro et al. [7] in four Italian state sec-
ondary schools. Table 1 shows the dimensions of the TJS and the partition of vari-
ables in six groups, each one associated with the corresponding dimension. Cron-
bach’s α [5] for each group is also computed and all dimensions result reliable.
Moreover, Cronbach’s α for the whole data set turns out to be 0.9528, revealing
the strong reliability of the general latent concept, i.e. the TJS. Additional variables
pertaining socio-demographic features are also measured; among them, we consider
the variable Gender in order to compare the hierarchical structure defining TJS on
the aforementioned data set with those estimated differently for female and male.

Firstly, we performed UCovM in a confirmatory approach on the covariance ma-
trix - containing nonnegative values - of the whole data set. The partition in six
groups of variables corresponding to the dimensions of the TJS is clearly visible in
the covariance matrix (Figure 1a). The groups which are mostly concordant within
them are those associated with Leadership and External School Image. As shown in
Figure 1b, the first aggregation lumps together Involvement and Leadership, which,
indeed, have a high impact on TJS [7]. The following aggregations show a con-
stant trend by adding one at a time the remaining dimensions - connected with the
school-based factors - to the first group, up to the Infrastructure, which is the less
concordant dimension with the others (the covariance between the broader group
with five dimensions and Infrastructure is equal to 0.2045).

Comparing these results with those obtained by implementing UCovM by gen-
der - both the covariance matrices are nonnegative - we can notice some differences
between TJS for female and male (Figure 2). The hierarchy over the six dimen-
sions of TJS for female (Figure 2a) is similar to that obtained on the whole data
set. Indeed, even if the covariances within and between groups are less strong than
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(a) Heatmap of the covariance matrix (b) Path diagram representation resulting from UCovM

Fig. 1: Graphical representations of relationships among the dimensions of TJS for
the whole data set.

(a) Female (b) Male

Fig. 2: Path diagram representation of the TJS resulting from UCovM by gender.

those on the whole data set, the aggregations are the same. This happens also be-
cause the percentage of women in the data set is greater than that of men. On the
other hand, the six dimensions of TJS for male show a slightly different hierar-
chical structure (Figure 2b). The first aggregation lumps together Involvement and
Leadership as well; therefore, the variables pertaining Involvement are merged with
those associated with Leadership such that the covariance within the former group is
equal to that between the two variable groups. Looking at Figure 1a, the difference
between the covariance magnitude of these two variable groups and that of the vari-
able group associated with Involvement seems to be slight. The other aggregations
show a constant trend, with covariances between Involvement, Leadership, External
School Image and School Climate greater than 0.38. The last two aggregations are
reversed with respect to those for female.
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5 Conclusions

The model proposed herein, called Ultrametric Covariance Model, is an extension
of the Ultrametric Correlation Model, introduced by Cavicchia et al. [4], to co-
variance matrices. It aims at reconstructing the hierarchical relationships existing
among variables by modelling a nonnegative covariance matrix via an ultrametric
covariance one.

UCovM was applied on a real data set in order to study the hierarchical rela-
tionships among the six dimensions of the Teachers’ Job Satisfaction. The analysis
is conducted on the overall data set [7] and differently by gender. The hierarchy
of the TJS dimensions is slightly different between male and female. Comparing
the results obtained by UCovM with those attained by UCM, we can highlight that
for the whole data and the males’ ones the second and the third aggregations are
swapped, whereas the hierarchy remains the same for the females’ data. Conversely
to UCM, UCovM allows to inspect the variability of each group of the variable par-
tition. Some comparisons with other methodologies, as Higher-Order models [2]
and hierarchical clustering methods, were carried out: in both cases the models’ fit
pointed out that a simultaneous methodology was needed. Cavicchia et al. [3] in
turn demonstrated that hierarchical clustering techniques had some limitations in
detecting hierarchical relationships among variables if compared to simultaneous
methodologies as UCM.

Our goals for future studies are to implement a bootstrap test to assess if the
difference between the parameters of the UCovM estimated by gender is statistically
significant; to study the TJS according to other socio-demographic features and to
build an R and/or Matlab package to implement the proposal.

Acknowledgements The authors would like to thank Prof. Pasquale Sarnacchiaro, and the authors
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