Practice 5

Carlo Cavicchia

ccavicchia@luiss.it 』

Exercise 1

The length of Black Mirror episodes (in minutes), can be assumed to be Normally distributed with mean $\mu=50$ minutes and standard deviation $\sigma=5$ minutes. A new season has just been released.
> What is the probability that the length of an episode of the new season is exactly 50 minutes?

Exercise 1

The length of Black Mirror episodes (in minutes), can be assumed to be Normally distributed with mean $\mu=50$ minutes and standard deviation $\sigma=5$ minutes. A new season has just been released.
> What is the probability that the length of an episode of the new season is exactly 50 minutes?

Let T denote the episode's length and assume $T \sim N\left(\mu=50, \sigma^{2}=5^{2}\right)$.

Exercise 1

The length of Black Mirror episodes (in minutes), can be assumed to be Normally distributed with mean $\mu=50$ minutes and standard deviation $\sigma=5$ minutes. A new season has just been released.
> What is the probability that the length of an episode of the new season is exactly 50 minutes?

Let T denote the episode's length and assume $T \sim N\left(\mu=50, \sigma^{2}=5^{2}\right)$.
Any interval with length 0 has null probability, hence $P(T=50)=0$.

Exercise 1

The length of Black Mirror episodes (in minutes), can be assumed to be Normally distributed with mean $\mu=50$ minutes and standard deviation $\sigma=5$ minutes. A new season has just been released.
> What is the probability that the length of an episode of the new season is between 48 and 51 minutes?

Exercise 1

The length of Black Mirror episodes (in minutes), can be assumed to be Normally distributed with mean $\mu=50$ minutes and standard deviation $\sigma=5$ minutes. A new season has just been released.
> What is the probability that the length of an episode of the new season is between 48 and 51 minutes?

Let us start with the standardization of T :

$$
Z=\frac{T-\mu}{\sigma}
$$

So,

$$
P(48<T \leq 51)=P\left(\frac{48-\mu}{\sigma}<\frac{T-\mu}{\sigma} \leq \frac{51-\mu}{\sigma}\right)=P(-0.4<Z \leq 0.2)
$$

Exercise 1

The length of Black Mirror episodes (in minutes), can be assumed to be Normally distributed with mean $\mu=50$ minutes and standard deviation $\sigma=5$ minutes. A new season has just been released.
> What is the probability that the length of an episode of the new season is between 48 and 51 minutes?

$$
\begin{gathered}
P(48<T \leq 51)=P(-0.4<Z \leq 0.2)=\phi(0.2)-\phi(-0.4)= \\
\phi(0.2)-[1-\phi(0.4)]=0.5793-0.3446=0.2347
\end{gathered}
$$

Exercise 1

The length of Black Mirror episodes (in minutes), can be assumed to be Normally distributed with mean $\mu=50$ minutes and standard deviation $\sigma=5$ minutes. A new season has just been released.
The new season, composed of 9 episodes, is scheduled to be released next fall. We are interested in the total length of the season (length of all 9 episodes played in sequence).
> What is the probability distribution of the total length?

Exercise 1

The length of Black Mirror episodes (in minutes), can be assumed to be Normally distributed with mean $\mu=50$ minutes and standard deviation $\sigma=5$ minutes. A new season has just been released.

The new season, composed of 9 episodes, is scheduled to be released next fall. We are interested in the total length of the season (length of all 9 episodes played in sequence).
> What is the probability distribution of the total length?
The total length $L=\sum_{i=1}^{9} T_{i}$ is sum of independent normal random variables, hence L is normal with expectation the sum of the single expectations and variance the sum of the single variances.

In conclusion, $L \sim N\left(\mu=450, \sigma^{2}=225\right)$

Exercise 1

The length of Black Mirror episodes (in minutes), can be assumed to be Normally distributed with mean $\mu=50$ minutes and standard deviation $\sigma=5$ minutes. A new season has just been released.

The new season, composed of 9 episodes, is scheduled to be released next fall. We are interested in the total length of the season (length of all 9 episodes played in sequence).
> Now consider the total length of the series in hours (for instance, if the total length is 405 minutes, in hours it will be $405 / 60=6.75$). Determine expected value and variance of the total length in hours.

Exercise 1

The length of Black Mirror episodes (in minutes), can be assumed to be Normally distributed with mean $\mu=50$ minutes and standard deviation $\sigma=5$ minutes. A new season has just been released.

The new season, composed of 9 episodes, is scheduled to be released next fall. We are interested in the total length of the season (length of all 9 episodes played in sequence).
> Now consider the total length of the series in hours (for instance, if the total length is 405 minutes, in hours it will be $405 / 60=6.75$). Determine expected value and variance of the total length in hours.

The total length in hours is $H=L / 60$. Hence its expectation and variance are: $\mathrm{E}(H)=\mathrm{E}(L) / 60=7.5$ and $\mathrm{V}(H)=\mathrm{V}(L) / 60^{2}=0.0625$

Exercise 1

The length of Black Mirror episodes (in minutes), can be assumed to be Normally distributed with mean $\mu=50$ minutes and standard deviation $\sigma=5$ minutes. A new season has just been released.

The new season, composed of 9 episodes, is scheduled to be released next fall. We are interested in the total length of the season (length of all 9 episodes played in sequence).
, Which hypotheses have been implicitely assumed in answering the last two points?

Exercise 1

The length of Black Mirror episodes (in minutes), can be assumed to be Normally distributed with mean $\mu=50$ minutes and standard deviation $\sigma=5$ minutes. A new season has just been released.

The new season, composed of 9 episodes, is scheduled to be released next fall. We are interested in the total length of the season (length of all 9 episodes played in sequence).
> Which hypotheses have been implicitely assumed in answering the last two points?

The episodes' lengths T_{1}, \ldots, T_{9} are all assumed to be normally distributed with parameters $\left(\mu=50, \sigma^{2}=25\right)$. We also suppose that the lengths are all independent.

Exercise 2

The time to run 10 km spent by an athlete is distributed as a normal (45,25), whereas the same time spent by a non-athlete is distributed as a normal $(50,100) .20$ athletes and 80 non-athletes take part of a 10 km race.

Exercise 2

The time to run 10 km spent by an athlete is distributed as a normal (45,25), whereas the same time spent by a non-athlete is distributed as a normal $(50,100) .20$ athletes and 80 non-athletes take part of a 10 km race.
, What is the probability that a runner finishes the race with a time shorter than 50 minutes?

Exercise 2

The time to run 10 km spent by an athlete is distributed as a normal (45,25), whereas the same time spent by a non-athlete is distributed as a normal $(50,100) .20$ athletes and 80 non-athletes take part of a 10 km race.
, What is the probability that a runner finishes the race with a time shorter than 50 minutes?

First of all, let us define the RVs we are considering.

$$
T \mid A \sim N(45,25)
$$

$$
T \mid \bar{A} \sim N(50,100)
$$

Exercise 2

The time to run 10 km spent by an athlete is distributed as a normal (45,25), whereas the same time spent by a non-athlete is distributed as a normal $(50,100) .20$ athletes and 80 non-athletes take part of a 10 km race.
, What is the probability that a runner finishes the race with a time shorter than 50 minutes?

So, for a generic runner we have

$$
P(T=t)=P(T=t \mid A) P(A)+P(T=t \mid \bar{A}) P(\bar{A})
$$

Exercise 2

The time to run 10 km spent by an athlete is distributed as a normal (45,25), whereas the same time spent by a non-athlete is distributed as a normal $(50,100) .20$ athletes and 80 non-athletes take part of a 10 km race.
, What is the probability that a runner finishes the race with a time shorter than 50 minutes?

$$
P(T<50)=P(T<50 \mid A) P(A)+P(T<50 \mid \bar{A}) P(\bar{A})
$$

Exercise 2

The time to run 10 km spent by an athlete is distributed as a normal (45,25), whereas the same time spent by a non-athlete is distributed as a normal $(50,100) .20$ athletes and 80 non-athletes take part of a 10 km race.
, What is the probability that a runner finish the race with a time shorter than 50 minutes?

Let us standardize our RV for the value 50:

$$
\begin{aligned}
& Z_{A}=\frac{50-45}{5}=1 \\
& Z_{\bar{A}}=\frac{50-50}{10}=0
\end{aligned}
$$

Exercise 2

The time to run 10 km spent by an athlete is distributed as a normal (45,25), whereas the same time spent by a non-athlete is distributed as a normal $(50,100) .20$ athletes and 80 non-athletes take part of a 10 km race.
> What is the probability that a runner finish the race with a time shorter than 50 minutes?

Thus,

$$
P(T<50)=P(T<50 \mid A) P(A)+P(T<50 \mid \bar{A}) P(\bar{A})
$$

Exercise 2

The time to run 10 km spent by an athlete is distributed as a normal $(45,25)$, whereas the same time spent by a non-athlete is distributed as a normal $(50,100) .20$ athletes and 80 non-athletes take part of a 10 km race.
> What is the probability that a runner finish the race with a time shorter than 50 minutes?

Thus,

$$
\begin{gathered}
P(T<50)=P\left(Z<Z_{A}\right) P(A)+P\left(Z<Z_{\bar{A}}\right) P(\bar{A})=P(Z<1) \frac{20}{100}+P(Z<0) \frac{80}{100} \\
\frac{1}{5} \phi(1)+\frac{4}{5} \frac{1}{2}=0.2 \times 0.8413+0.8 \times 0.5 \approx 0.57
\end{gathered}
$$

Exercise 2

The time to run 10 km spent by an athlete is distributed as a normal (45,25), whereas the same time spent by a non-athlete is distributed as a normal $(50,100) .20$ athletes and 80 non-athletes take part of a 10 km race.

Exercise 2

The time to run 10 km spent by an athlete is distributed as a normal (45,25), whereas the same time spent by a non-athlete is distributed as a normal $(50,100) .20$ athletes and 80 non-athletes take part of a 10 km race.
> A runner arrives after 50 minutes. What is the probability that he/she is an athlete?

Exercise 2

The time to run 10 km spent by an athlete is distributed as a normal (45,25), whereas the same time spent by a non-athlete is distributed as a normal $(50,100) .20$ athletes and 80 non-athletes take part of a 10 km race.
> A runner arrives after 50 minutes. What is the probability that he/she is an athlete?

$$
\begin{gathered}
P(A \mid T>50)=\frac{P(T>50 \mid A) P(A)}{P(T>50)}=\frac{P\left(Z>Z_{A}\right) \frac{1}{5}}{1-P(T<50)} \\
\frac{[1-P(Z<1)] \frac{1}{5}}{0.43}=\frac{0.1587 \times \frac{1}{5}}{0.43} \approx 0.07
\end{gathered}
$$

Exercise 3

Theoretical exercise

If X is normally distributed with mean μ and variance $\sigma^{2}>0$, then:

$$
V=\left(\frac{X-\mu}{\sigma}\right)^{2}=Z^{2}
$$

is distributed as a chi-square random variable with 1 degree of freedom.

Exercise 3

Theoretical exercise

To prove this theorem, we need to show that the p.d.f. of the random variable V is the same as the p.d.f. of a chi-square random variable with 1 degree of freedom. That is, we need to show that:

$$
f_{V}(v)=\frac{1}{\Gamma\left(\frac{1}{2}\right) 2^{\frac{1}{2}}} v^{\frac{1}{2}-1} e^{-\frac{v}{2}}
$$

Exercise 3

Theoretical exercise

The strategy we'll take is to find $F_{V}(v)$, the cumulative distribution function of V , and then differentiate it to get $f_{V}(v)$, the probability density function of V. That said, we start with the definition of the cumulative distribution function of V :

Exercise 3

Theoretical exercise

The strategy we'll take is to find $F_{V}(v)$, the cumulative distribution function of V , and then differentiate it to get $f_{V}(v)$, the probability density function of V. That said, we start with the definition of the cumulative distribution function of V :

$$
F_{V}(v)=P(V \leq v)=P\left(Z^{2} \leq v\right)=P(-\sqrt{v} \leq Z \leq \sqrt{v})
$$

Exercise 3

Theoretical exercise

The strategy we'll take is to find $F_{V}(v)$, the cumulative distribution function of V , and then differentiate it to get $f_{V}(v)$, the probability density function of V. That said, we start with the definition of the cumulative distribution function of V :

$$
F_{V}(v)=P(V \leq v)=P\left(Z^{2} \leq v\right)=P(-\sqrt{v} \leq Z \leq \sqrt{v})
$$

So,

$$
F_{V}(v)=\int_{-\sqrt{v}}^{\sqrt{v}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d z
$$

Exercise 3

Theoretical exercise

The strategy we'll take is to find $F_{V}(v)$, the cumulative distribution function of V , and then differentiate it to get $f_{V}(v)$, the probability density function of V. That said, we start with the definition of the cumulative distribution function of V :

By the symmetry of the normal distribution, we can integrate over just the positive portion of the integral, and then multiply by two:

$$
F_{V}(v)=2 \int_{0}^{\sqrt{v}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d z
$$

Exercise 3

The strategy we'll take is to find $F_{V}(v)$, the cumulative distribution function of V , and then differentiate it to get $f_{V}(v)$, the probability density function of V. That said, we start with the definition of the cumulative distribution function of V :

Let us consider the following change of variables:

$$
z=y^{\frac{1}{2}}
$$

So:

$$
d z=\frac{1}{2} y^{-\frac{1}{2}} d y=\frac{d y}{2 \sqrt{y}}
$$

Exercise 3

The strategy we'll take is to find $F_{V}(v)$, the cumulative distribution function of V , and then differentiate it to get $f_{V}(v)$, the probability density function of V. That said, we start with the definition of the cumulative distribution function of V :

$$
\begin{gathered}
F_{V}(v)=2 \int_{0}^{\sqrt{v}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d z=2 \int_{0}^{v} \frac{1}{\sqrt{2 \pi}} e^{-\frac{y}{2}} \frac{d y}{2 \sqrt{y}} \\
F_{V}(v)=\int_{0}^{v} \frac{1}{\sqrt{\pi} \sqrt{2}} y^{\frac{1}{2}-1} e^{-\frac{y}{2}} d y
\end{gathered}
$$

Exercise 3

Theoretical exercise

The strategy we'll take is to find $F_{V}(v)$, the cumulative distribution function of V , and then differentiate it to get $f_{V}(v)$, the probability density function of V. That said, we start with the definition of the cumulative distribution function of V :

$$
f_{V}(v)=F_{V}^{\prime}(v)=\frac{1}{\sqrt{\pi} \sqrt{2}} v^{\frac{1}{2}-1} e^{-\frac{v}{2}}
$$

for $v>0$.

Exercise 3

The strategy we'll take is to find $F_{V}(v)$, the cumulative distribution function of V , and then differentiate it to get $f_{V}(v)$, the probability density function of V. That said, we start with the definition of the cumulative distribution function of V :

If you compare this $g_{V}(v)$ to the first $g_{V}(v)$ that we said we needed to find way back at the beginning of this proof, you should see that we are done if the following is true:

$$
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
$$

Exercise 3

The strategy we'll take is to find $F_{V}(v)$, the cumulative distribution function of V , and then differentiate it to get $f_{V}(v)$, the probability density function of V. That said, we start with the definition of the cumulative distribution function of V :

It is indeed true, as the following argument illustrates. Because $g_{V}(v)$ is a p.d.f., the integral of the p.d.f. over the support must equal 1:

$$
\int_{0}^{\infty} \frac{1}{\sqrt{\pi} \sqrt{2}} v^{\frac{1}{2}-1} e^{-\frac{v}{2}} d v=1
$$

Exercise 3

The strategy we'll take is to find $F_{V}(v)$, the cumulative distribution function of V , and then differentiate it to get $f_{V}(v)$, the probability density function of V. That said, we start with the definition of the cumulative distribution function of V :

Now, change the variables by letting $v=2 x$, so that $d v=2 d x$. Making the change, we get:

$$
\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{1}{\sqrt{2}}(2 x)^{\frac{1}{2}-1} e^{-x} 2 d x=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} x^{\frac{1}{2}-1} e^{-x} d x=\frac{1}{\sqrt{\pi}} \Gamma\left(\frac{1}{2}\right)=1
$$

Exercise 4

Find the probability that the standard normal random variable Z falls between -1.96 and 1.96.
> using the standard normal distribution

Exercise 4

Find the probability that the standard normal random variable Z falls between -1.96 and 1.96.
> using the standard normal distribution

$$
\begin{gathered}
P(-1.96 \leq Z \leq 1.96)=P(Z \leq 1.96))-P(Z \leq-1.96))= \\
P(Z \leq 1.96))-P(Z \geq 1.96))=0.975-0.025=0.95
\end{gathered}
$$

Exercise 4

Find the probability that the standard normal random variable Z falls between -1.96 and 1.96.
> using the chi-square distribution

Exercise 4

Find the probability that the standard normal random variable Z falls between -1.96 and 1.96.
> using the chi-square distribution
$P(-1.96<Z<1.96)=P(|Z|<1.96)=P\left(Z^{2}<1.96^{2}\right)=P\left(\chi_{(1)}^{2}<3.8416\right)=0.95$

Exercise 5

First and third quartile of a Normal RV are 1 and 3, respectively.

Exercise 5

First and third quartile of a Normal RV are 1 and 3, respectively.
> Compute the mean

Exercise 5

First and third quartile of a Normal RV are 1 and 3, respectively.
> Compute the mean
The Normal distribution is simmetric, median and mean are the same. The mean is equal to 2

Exercise 5

First and third quartile of a Normal RV are 1 and 3, respectively.
, Compute the variance

Exercise 5

First and third quartile of a Normal RV are 1 and 3, respectively.
, Compute the variance
The percentile $z_{0.75}=\frac{3-2}{\sigma}=\frac{1}{\sigma}$

Exercise 5

First and third quartile of a Normal RV are 1 and 3, respectively.
, Compute the variance
The percentile $z_{0.75}=\frac{3-2}{\sigma}=\frac{1}{\sigma}$
So, we know that

$$
P\left(Z<z_{0.75}\right)=0.75
$$

By searching into the table:

$$
P\left(Z<z_{0.75}\right)=0.75 \rightarrow z_{0.75}=\frac{0.67+0.68}{2}=\frac{1}{\sigma}
$$

Exercise 5

First and third quartile of a Normal RV are 1 and 3, respectively.
> Compute the variance

$$
\sigma^{2}=2.20^{2}=4.84
$$

Exercise 5

First and third quartile of a Normal RV are 1 and 3, respectively.
> Compute the variance of $Y=3 X-2$

Exercise 5

First and third quartile of a Normal RV are 1 and 3, respectively.
> Compute the variance of $Y=3 X-2$

$$
\sigma_{Y}^{2}=3^{2} \times \sigma_{X}^{2}=9 \times 4.84=43.56
$$

