Practice 2

Carlo Cavicchia

ccavicchia@luiss.it 』

Probability: events

, Combinations and permutations
, Mutually exclusive events
, Conditional probability law
> Independent events
> Bayes Theorem

Exercise 1

Let us consider two coins: M_{1} that gives "head" with probability equal to 0.8 and M_{2} that gives "head" with probability equal to 0.2 . Chosen one coin, flip it three times.

Let us consider X the random variable counting the number of "head".

Exercise 1

Let us consider two coins: M_{1} that gives "head" with probability equal to 0.8 and M_{2} that gives "head" with probability equal to 0.2 . Chosen one coin, flip it three times.

Let us consider X the random variable counting the number of "head".
> What is the probability of having "head" at the first flip?

Exercise 1

Let us consider two coins: M_{1} that gives "head" with probability equal to 0.8 and M_{2} that gives "head" with probability equal to 0.2 . Chosen one coin, flip it three times.

Let us consider X the random variable counting the number of "head".
> What is the probability of having "head" at the first flip?
, What is the probability of having "head" at the second flip?

Exercise 1

Let us consider two coins: M_{1} that gives "head" with probability equal to 0.8 and M_{2} that gives "head" with probability equal to 0.2 . Chosen one coin, flip it three times.

Let us consider X the random variable counting the number of "head".
> What is the probability of having "head" at the first flip?
, What is the probability of having "head" at the second flip?
, Are they indipendent?

Exercise 1

Let us consider two coins: M_{1} that gives "head" with probability equal to 0.8 and M_{2} that gives "head" with probability equal to 0.2 . Chosen one coin, flip it three times.

Let us consider X the random variable counting the number of "head".
> What is the probability of having "head" at the first flip?
, What is the probability of having "head" at the second flip?
, Are they indipendent?
> Find the distribution of X.

Exercise 1

Let us consider two coins: M_{1} that gives "head" with probability equal to 0.8 and M_{2} that gives "head" with probability equal to 0.2 . Chosen one coin, flip it three times.

Let us consider X the random variable counting the number of "head".
> What is the probability of having "head" at the first flip?
, What is the probability of having "head" at the second flip?
> Are they indipendent?
> Find the distribution of X.
, Given that the number of "head" is equal to one, which coin is most likely to have been flipped?

Exercise 2

Let us consider a box containing three different coins. The first coin has a "head" on both the faces, the second coin has a "tail" on both the faces, the third coin is a standard one: "head" on one face and "tail" on the other.

We pick one coin at random from the box.

Exercise 2

Let us consider a box containing three different coins. The first coin has a "head" on both the faces, the second coin has a "tail" on both the faces, the third coin is a standard one: "head" on one face and "tail" on the other.

We pick one coin at random from the box.
> What is the probability of the front face to be a "head"?

Exercise 2

Let us consider a box containing three different coins. The first coin has a "head" on both the faces, the second coin has a "tail" on both the faces, the third coin is a standard one: "head" on one face and "tail" on the other.

We pick one coin at random from the box.
> What is the probability of the front face to be a "head"?
> Given that the front face shows a "head", what is the probability of the back face to be a "head" as well??

Probability: random variables

> Discrete random variables: pmf and cdf
, Famous discrete: Bernoulli, Binomial, Poisson ...
, Continuous random variables: pdf and cdf
, Famous continuous: Uniform, Exponential, Normal ...

Exercise 3

Let us consider the following function:

$$
p(x)= \begin{cases}0.0 & X<1 \\ 0.1 & 1 \leq X<2 \\ 0.8 & 2 \leq X<3 \\ 1.0 & X \geq 3\end{cases}
$$

> Is it a valid pmf?

Exercise 3

Let us consider the following function:

$$
p(x)= \begin{cases}0.0 & X<1 \\ 0.1 & 1 \leq X<2 \\ 0.8 & 2 \leq X<3 \\ 1.0 & X \geq 3\end{cases}
$$

> Is it a valid pmf?
> Is it a valid cdf?

Exercise 3

Let us consider the following function:

$$
p(x)= \begin{cases}0.0 & X<1 \\ 0.1 & 1 \leq X<2 \\ 0.8 & 2 \leq X<3 \\ 1.0 & X \geq 3\end{cases}
$$

, Is it a valid pmf?
> Is it a valid cdf?
> Can you derive the pmf from the cdf?

Exercise 3

Let us consider the following function:

$$
p(x)= \begin{cases}0.0 & X<1 \\ 0.1 & 1 \leq X<2 \\ 0.8 & 2 \leq X<3 \\ 1.0 & X \geq 3\end{cases}
$$

> Is it a valid pmf?
> Is it a valid cdf?
> Can you derive the pmf from the cdf?
> Plot them

Exercise 3

Let us consider the following function:

$$
p(x)= \begin{cases}0.0 & X<1 \\ 0.1 & 1 \leq X<2 \\ 0.8 & 2 \leq X<3 \\ 1.0 & X \geq 3\end{cases}
$$

> Is it a valid pmf?
> Is it a valid cdf?
> Can you derive the pmf from the cdf?
> Plot them
> What is the probability that $0.5<X<3$? And $2 \leq X \leq 4$?

Exercise 4

T describes the (continuous) time interval (in years) intercurring between two lightnings hitting the ground in the same area. Waiting times are usually assumed to be distributed according to a distribution with density:

$$
f_{T}(t ; \lambda)=\left\{\begin{array}{ll}
\lambda e^{-\lambda t} & t \geq 0 \\
0 & t<0
\end{array} ; \lambda>0\right.
$$

A scientist keeps his camera pointed toward an area with the aim to record one lightning.

Exercise 4

T describes the (continuous) time interval (in years) intercurring between two lightnings hitting the ground in the same area. Waiting times are usually assumed to be distributed according to a distribution with density:

$$
f_{T}(t ; \lambda)=\left\{\begin{array}{ll}
\lambda e^{-\lambda t} & t \geq 0 \\
0 & t<0
\end{array} ; \lambda>0\right.
$$

A scientist keeps his camera pointed toward an area with the aim to record one lightning.
> Prove that $f_{T}(t ; \lambda)$ is a valid pdf.

Exercise 4

T describes the (continuous) time interval (in years) intercurring between two lightnings hitting the ground in the same area. Waiting times are usually assumed to be distributed according to a distribution with density:

$$
f_{T}(t ; \lambda)=\left\{\begin{array}{ll}
\lambda e^{-\lambda t} & t \geq 0 \\
0 & t<0
\end{array} ; \lambda>0\right.
$$

A scientist keeps his camera pointed toward an area with the aim to record one lightning.
> Prove that $f_{T}(t ; \lambda)$ is a valid pdf.
, What is the probability that he will record the first lightning within t^{*} years?

Exercise 4

T describes the (continuous) time interval (in years) intercurring between two lightnings hitting the ground in the same area. Waiting times are usually assumed to be distributed according to a distribution with density:

$$
f_{T}(t ; \lambda)=\left\{\begin{array}{ll}
\lambda e^{-\lambda t} & t \geq 0 \\
0 & t<0
\end{array} ; \lambda>0\right.
$$

A scientist keeps his camera pointed toward an area with the aim to record one lightning.
> Prove that $f_{T}(t ; \lambda)$ is a valid pdf.
, What is the probability that he will record the first lightning within t^{*} years?
> Assuming that $\lambda=0.1$ and $t^{*}=100$, compute this probability.

Exercise 4

T describes the (continuous) time interval (in years) intercurring between two lightnings hitting the ground in the same area. Waiting times are usually assumed to be distributed according to a distribution with density:

$$
f_{T}(t ; \lambda)=\left\{\begin{array}{ll}
\lambda e^{-\lambda t} & t \geq 0 \\
0 & t<0
\end{array} ; \lambda>0\right.
$$

A scientist keeps his camera pointed toward an area with the aim to record one lightning.
> Prove that $f_{T}(t ; \lambda)$ is a valid pdf.
> What is the probability that he will record the first lightning within t^{*} years?
> Assuming that $\lambda=0.1$ and $t^{*}=100$, compute this probability.
> Given that he has already waited t_{0} years, what is the probability that he will record the first lightning within additional t^{*} years?

