Basics of Probability

carlo.cavicchia@uniroma1.it 🖂

Carlo Cavicchia

Probability

We call a phenomenon **random** if we are **uncertain** about its outcome.

Probability allows us to deal with randomness, by **quantifying uncertainty** and measuring the chances of the possible outcomes.

Typically the randomness *we* have to deal with comes from the **sampling procedure**: when we observe data, their values depends on the units we randomly select.

Examples of random phenomena

- > the moment it will first start raining
- > the result of a football match
- > tomorrow's price of a stock
- > the number of tweets Trump is going to write today

> ...

The basic ingredients

We call a phenomenon "random" if we are uncertain about its outcome. It is characterize by:

- > Sample Space: the set of all possible outcomes. Its elements are exhaustive (no possible is left out) and mutually exclusive (only one outcome can occur).
- > Event: a subset of the sample space corresponding to one or more possible outcomes
- > **Probability**: measure of how likely each element of the sample space is.

The basic ingredients - an evergreen Example

Random phenomenon: throw of a die

> Sample Space: all the possible outcomes

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

> Event: "the die returns an even number"

$$E = \{2, 4, 6\}$$

> Probability:

$$P(E) = 1/2$$

- > Two coins are tossed. Note: Each coin has two possible outcomes H (Heads) and T (Tails).
- 1. Get the sample space.
- 2. Find the probability that two heads are obtained.
- A card is drawn at random from a deck of cards. Find the probability of getting a diamond.

ightarrow Complement (A^c or \bar{A}) everything that is not in A.

Example A = "the die returns an even number"

 $\Rightarrow A^c$ = "the die returns an odd number"

ightarrow Complement (A^c or \bar{A}) everything that is not in A.

Example A= "the die returns an even number", $A^c=$ "the die returns an odd number"

> Intersection $(A \cap B)$ given two events A, B, everything that is in both A and B.

Example A= "the die returns an even number", B= "the die returns a number smaller than 5"

$$\Rightarrow A \cap B = \{2, 4\}$$

> Intersection $(A \cap B)$ given two events A, B, everything that is in both A and B.

Example A= "the die returns an even number", B= "the die returns a 5"

$$\Rightarrow A \cap B = \emptyset$$

A and B are disjoint

> **Union** $(A \cup B)$ given two events A, B, everything that is in *either* A, B or in both.

Example A= "the die returns an even number", B= "the die returns a 5" $\Rightarrow A \cup B = \{2,4,5,6\}$

Exercise :: challenging

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.

> Which is more probable?

Linda is a bank teller.
Linda is a bank teller and is active in the feminist movement.

Some useful relationships

Probability Axioms...

- $\rightarrow 0 \le P(A) \le 1$
- $\rightarrow P(\Omega) = 1$
- $P(\emptyset) = 0$

Some useful relationships

Probability Axioms...

- $\rightarrow 0 \le P(A) \le 1$
- $P(\Omega) = 1$
- $\rightarrow P(\emptyset) = 0$

... and some trivial consequences

- $P(A^c) = 1 P(A)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Some useful relationships

Probability Axioms...

- $\rightarrow 0 \le P(A) \le 1$
- $P(\Omega) = 1$
- $P(\emptyset) = 0$

... and some trivial consequences

- $P(A^c) = 1 P(A)$
- $\rightarrow P(A \cup B) = P(A) + P(B) P(A \cap B)$

if A,B are disjoint then $P(A \cup B) = P(A) + P(B)$

- > Which of the following is an impossible event?
- 1. Choosing an odd number from 1 to 10.
- 2. Getting an even number after rolling a single 6-sided die.
- 3. Choosing a white marble from a jar of 25 green marbles.
- 4. None of the above.
 - > There are 4 parents, 3 students and 6 teachers in a room. If a person is selected at random, what is the probability that it is a teacher or a student?
- 1. 4/13
- 2. 7/13
- 3. 9/13
- 4. None of the above.

How do we define probability?

something we don't really focus about

- Classical approach: Assigning probabilities based on the assumption of equally likely outcomes.
- Empirical approach: Assigning probabilities based on experimentation or historical data.
- Subjective approach: Assigning probabilities based on the assignor's judgment.

Regardless of the approach we follow, **probability is a measure of uncertainty**, i.e. it quantifies how much we do not know, hence it strongly **depends on the information available** to us.

> Get the probability of a Italian newborn is a girl.

> Get the probability of a Italian newborn is a girl.

1/2... isn't it?

> Get the probability of a Italian newborn is a girl.

1/2... isn't it?

But, if we know that the 51.3% of Italian people are women? What does it happen to that probability?

Conditional Probability

Probability is a measure of uncertainty on the result of a random experiment, so **any additional information** on the outcome **affects it.**

Let A and B be two events, if we know that B happened, we can update the probability of A as follows:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Example: if we know that a die returned an *even* number, then the probability of observing a 3 is 0.

Independence

absence of relation between events

If knowing an event B does not affect our probability evaluation of A, then we say that A and B are **independent**:

$$P(A|B) = P(A)$$

Combining this to the definition of conditional probability we can derive the **factorization criterion**, to assess if two events are independent:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = P(A) \iff P(A \cap B) = P(A)P(B)$$

CAVEAT: The fact that two events are independent **does not mean they are disjoint**, and actually this is almost never the case. In fact for $P(A \cap B) = P(\emptyset) = 0 = P(A)P(B)$, either A or B must have probability 0.

> Three cards are chosen at random from a deck without replacement. What is the probability of choosing an eight, a seven and a six, in order?

```
6/35152
1/2197
8/16575
None of the above.
```

A jar contains 5 red, 3 green, 2 purple and 4 yellow marbles. A marble is chosen at random from the jar. After replacing it, a second marble is chosen. What is the probability of choosing a purple and then a red marble?

```
5/98
1/2
3/98
2/49
```

Random variable

how to define it

Typically we are not interested in the single outcome itself or in the events but in a *function* of them.

A **random variable** is any function from the sample space to the real numbers.

Examples:

- > toss a coin three times and count the number of tails
- > roll two dice and **sum** the values of the faces

NB A random variable is a *number*: we can do all sorts of operations with it!

Random variables

how to characterize it

- > X random variable: the random function (before it is observed!)
- x realization of the random variable: the number we get after we observe the result of the random experiment
- > $\mathcal X$ support of the random variable: all the possible values assumed by X

Example:

 \rightarrow toss a three coins. X is the number of tails

$$\mathcal{X} = \{0,1,2,3\}$$

Probability statement on a random variable can be derived from the probability on the basic events!

Distribution of a random variable

an example of how to derive it

> Toss a coin three times. X is the random variable representing the number of Tails

ω	$P(\omega)$	\boldsymbol{x}
ННН	1/8	0
THH	1/8	1
HTH	1/8	1
HHT	1/8	1
TTH	1/8	2
THT	1/8	2
HTT	1/8	2
TTT	1/8	3

x	$p_x = P(X = x)$
0	1/8×1 = 1/8
1	1/8×3 = 3/8
2	1/8×3 = 3/8
3	1/8×1 = 1/8

The distribution of a random variable p_x is just a convenient way of summarizing single outcomes probabilities.

- > Two dice are rolled:
- 1. Construct the sample space. How many outcomes are there?
- 2. Find the probability of rolling a sum of 7.
- 3. Find the probability of getting a total of at least 10.
- 4. Find the probability of getting a odd number as the sum.

Distribution of a Discrete Random Variable:

When $\mathcal X$ is countable, the random variable X is said to be **discrete**, and it is characterized by:

> Probability mass distribution

$$p_x = P(X = x) \qquad \forall x \in \mathcal{X}$$

> Cumulative distribution function

$$F_X(x) = P(X \leq x) = \sum_{y \leq x} P(X = y) = \sum_{y \leq x} p_y$$

Examples:

- > What is the probability of **exactly** 1 head? $P(X=1) = p_1 = 3/8$
- > What is the probability of at most two heads?

$$P(X \le 2) = F_X(2) = p_0 + p_1 + p_2 = 7/8$$

an ode to recycling

Remember: statements such as X=1 or $X\leq 2$ are **events**, we can use *intersection, union, complement* and all the operations we have seen before!

Examples:

> What is the probability of **note getting** 1 head?

$$P(X \neq 1) = P((X = 1)^c) = 1 - P(X = 1) = 5/8$$

> What is the probability of at least 2 heads?

$$P(X \geq 2) = 1 - P(X \leq 1) = 1 - F_X(1) = 1 - (p_0 + p_1) = 4/8$$

> What is the probability of o **or** 2 heads? (disjoint events!)

$$P(X=2\cup X=0)=P(X=2)+P(X=0)=p_0+p_2=4/8$$

Properties

Probability mass distribution

- $p_x \ge 0$
- $p_x \leq 1$
- > $\sum_x p_x = 1$

Cumulative distribution function

- $\rightarrow 0 \le F(x) \le 1$
- $\rightarrow F$ is non-decreasing
- $\rightarrow F$ is right continuous

> Let X be a discrete random variable with the following probability distribution

$$F(x) = \begin{cases} 0 & \text{if} \quad x < 1 \\ 1/5 & \text{if} \quad 1 \le x < 4 \\ 3/4 & \text{if} \quad 4 \le x < 6 \\ 1 & \text{if} \quad x \ge 6 \end{cases}$$

- > Calculate the probability function.
- > Calculate the following probabilities
- a. P(X=6)
- b. P(X=5)
- c. P(2<X<5.5)
- d. P(o≤X<4)

Distribution of a Continuous Random Variable:

When \mathcal{X} is **not** countable, the random variable X is said to be **continuous**.

If $\mathcal X$ is not countable, it is not possible to put mass on any value $x\in\mathcal X$, meaning that

$$P(X=x)=0 \qquad \qquad \forall x \in \mathcal{X}$$

> Cumulative distribution function

$$F_X(x) = P(X \leq x) = \int_{-\infty}^x f_X(t) \mathrm{d}t \qquad \qquad \forall x \in \mathcal{X}$$

> Probability density distribution

$$f_X(x) = \frac{dF_X(x)}{dx} \qquad \forall x \in \mathcal{X}$$

Properties

Probability density function

- $f_X(x) \ge 0$
- $f_X(x)$ needs not be ≤ 1

$$\rightarrow \int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$

Cumulative distribution function

- $> 0 \le F(x) \le 1$
- $\rightarrow F$ is non-decreasing
- $\rightarrow F$ is right continuous

> Let \boldsymbol{X} be a continuous random variable with the following probability distribution

$$f(x) = \begin{cases} cx^2(1-x) & \text{if} \quad 0 < x \le 1 \\ 0 & \text{if} \quad \text{otherwise} \end{cases}$$

 \rightarrow Determine c so that f(x) is a valid pdf.

Comparison

$$ightarrow X$$
 discrete rv with pmf p_x

>
$$P(X \in A) = \sum_{x \in A} p_x$$

$${\scriptstyle \rightarrow}\ X \ {\rm continuous}\ {\rm rv}\ {\rm with}\ {\rm pdf}\ f_X(x)$$

$$P(X \in A) = \int_A f_X(x) dx$$

if
$$A = \{x_1, \dots, x_k\}$$
 then

$$P(X \in A) = \sum_{i=1}^{k} p_{x_i}$$

if
$$A = [a, b]$$
 then

$$\begin{split} P(X \in A) &= \int_a^b f_X(x) \mathrm{d}x \\ &= F_X(b) - F_X(a) \end{split}$$

Comparison

$$A = \{x_1, \dots, x_k\}$$

$$P(X \in A) = \sum_{i=1}^k p_{x_i}$$

$$A = [a,b]$$

$$P(X \in A) = F_X(b) - F_X(a)$$

Summaries

The distribution of a random variables provides fully characterize it, but it may not be "immediate" to gain insights from it.

Once more we need to summarize the information contained in the distribution.

Candidates:

- Mode: the value that is "more likely", i.e. the value that maximizes the density
- \rightarrow Median: the value that "splits in half" the distribution, i.e. m s.t.

$$P(X \le m) = P(X > m) = 0.5$$

Expected Value

king of all summaries

The **Mean** or **Expected Value** is the "average" of the elements in the support of X, weighted by the probability of each outcome.

The expected value gives a rough idea of what to expect for the **average** of the observed values in a **large repetition** of the random experiment (not what we'll observe in a single observation!)

X discrete r.v. with p.m.f. p_x

X continuous r.v. with p.d.f. $f_X(x)$

$$\mathbb{E}[X] = \sum_{x \in \mathcal{X}} x p_x \qquad \qquad \mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) \mathrm{d}x$$

WATCH OUT The expected value may not exist!

Properties

$$\Rightarrow \mathbb{E}[c] = c \text{ for any constant } c$$

$$\mathbb{E}[\mathbb{E}[X]] = \mathbb{E}[X]$$

$$\Rightarrow \mathbb{E}[aX + b] = a\mathbb{E}[X] + b$$

$$\Rightarrow \mathbb{E}[X - \mathbb{E}[X]] = 0$$

$$> \mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y] = 0$$

The Law of the Lazy Statistician Given a continuous (respectively discrete) random variable X whose expectation exists, and a function g, then

$$\mathbb{E}[g(X)] = \int g(x) f_X(x) dx \qquad \qquad \left(\mathbb{E}[g(X)] = \sum_x g(x) p_x \right)$$

Measuring Variability

The expected value gives an idea about the **center** of the distribution, but does not account for the dispersion of the values

Example:

> Given two investment strategies with the same expected payout, we would like to choose the one with less variability

(Bad) Candidates:

- \rightarrow average deviation from the mean $\mathbb{E}[X \mathbb{E}[X]]$ (not informative)
- > average absolute deviation from the mean $\mathbb{E}[X-\mathbb{E}[X]]$ (computationally challenging)

Variance

queen of all summaries

The **variance** of a random variable X

$$\mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

tells us of **how much** the variable oscillates around the mean.

X discrete r.v. with p.m.f. p_x

X continuous r.v. with p.d.f. $f_X(x)$

$$\mathbb{V}[X] = \sum_{x \in \mathcal{X}} (x - \mathbb{E}[X])^2 p_x \qquad \qquad \mathbb{V}[X] = \int_{-\infty}^{\infty} (x - \mathbb{E}[X])^2 f_X(x) \mathrm{d}x$$

Properties

- > the variance is always **non-negative,** $\mathbb{V}[X] \geq 0$ and is 0 only when X is constant
- > the square root of the variance $\operatorname{sd}(X) = \sqrt{\mathbb{V}[X]}$ is called **standard deviation**. Roughly, $[\cdot]$ describes how far values of the random variable fall, on the average, from the expected value of the distribution
- > the variance is insensitive to the location of the distribution but depends only on its scale

$$\mathbb{V}[aX + b] = a^2 \mathbb{V}[X]$$

> a computation-friendlier alternative definition of the variance is:

$$\mathbb{V}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

Exercise

> Let \boldsymbol{X} be a discrete random variable with the following probability distribution

$$F(x) = \begin{cases} 0 & \text{if} \quad x < 1 \\ 1/5 & \text{if} \quad 1 \le x < 4 \\ 3/4 & \text{if} \quad 4 \le x < 6 \\ 1 & \text{if} \quad x \ge 6 \end{cases}$$

> Calculate mean and variance

Exercise

> Let \boldsymbol{X} be a continuous random variable with the following probability distribution

$$f(x) = \begin{cases} cx^2(1-x) & \text{if} \quad 0 < x \leq 1 \\ 0 & \text{if} \quad \text{otherwise} \end{cases}$$

> Calculate mean and variance

Covariance

If we have 2 random variables, the **covariance** gives us a measure of association between them.

$$\begin{split} \mathbb{C}ov(X,Y) &= \mathbb{E}\left[(X - \mathbb{E}X)(Y - \mathbb{E}Y) \right] \\ &= \mathbb{E}[XY] - \mathbb{E}X\mathbb{E}Y \end{split}$$

- \rightarrow The sign of $\mathbb{C}ov(X,Y)$ informs on the nature of the association
- $\,\,$ The higher $|\mathbb{C}ov(X,Y)|$, the stronger the association

$$\operatorname{Remark} \mathbb{V}[X+Y] = \mathbb{V}[X] + \mathbb{V}[Y] + 2\mathbb{C}ov(X,Y)$$

Independence of Random Variables

Two random variables X, Y are independent if

$$\begin{split} F_{X,Y}(x,y) &= P(X \leq x \cap Y \leq y) \\ &= P(X \leq x) P(Y \leq y) \\ &= F_X(x) F_Y(y) & \forall x,y \in \mathbb{R} \end{split}$$

Intuitively if X and Y are independent, the value of one does not affect the value of the other.

Remark: if X_1, \dots, X_n are independent then

$$\begin{array}{l} > p_{x_1,\ldots,x_n} = p_{x_1} \cdot \cdots \cdot p_{x_n} \\ > f_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = f_{X_1}(x_1) \cdot \cdots \cdot f_{X_n}(x_n) \end{array}$$

Independence of Random Variables

Factorization Criterion

$$F_{X,Y}(x,y) = F_X(x)F_Y(y) \qquad \qquad \forall x,y \in \mathbb{R}$$

If X and Y are independent then $\mathbb{E}[XY] = \mathbb{E}X\mathbb{E}Y$

As a consequence

$$\mathbb{C}ov(X,Y) = \mathbb{E}[XY] - \mathbb{E}X\mathbb{E}Y = 0$$

WATCH OUT: the converse is not true! If $\mathbb{C}ov(X,Y)=0$, the two random variables may still be associated.

Exercise [1/2]

> Let X and Y be two random variables with marginal distribution functions

$$F_X(x) = \begin{cases} 0 & \text{if} \quad x < 0 \\ 1 - exp(-x) & \text{if} \quad x \geq 0 \end{cases}$$

$$F_Y(y) = \begin{cases} 0 & \text{if} \quad y < 0 \\ 1 - exp(-y) & \text{if} \quad y \geq 0 \end{cases}$$

Exercise [2/2]

> Determine if X and Y are independent given the joint distribution function:

$$F_{X,Y}(x,y) = \begin{cases} 0 & \text{if} \quad x < 0 \quad \text{or} \quad y < 0 \\ 1 - exp(-x) - exp(-y) + exp(-x - y) & \text{if} \quad x \geq 0 \quad \text{and} \ y \geq 0 \end{cases}$$